MLpp
ml::Kernels::GaussianRBF Class Reference

Gaussian radial basis function. More...

#include <Kernels.hpp>

Inheritance diagram for ml::Kernels::GaussianRBF:
Collaboration diagram for ml::Kernels::GaussianRBF:

Public Member Functions

double value (double r2) const override
 Radial basis function of the RBF kernel. More...
 
double gradient (double r2) const override
 Gradient of the radial basis function of the RBF kernel. More...
 
double second_derivative (double r2) const override
 Second derivative of the radial basis function of the RBF kernel. More...
 
- Public Member Functions inherited from ml::Kernels::RadialBasisFunction
virtual ~RadialBasisFunction ()
 Virtual destructor.
 

Detailed Description

Gaussian radial basis function.

Given by the formula f(r2) = exp(-r2), where r2 is the SQUARE of the norm.

Member Function Documentation

◆ value()

double ml::Kernels::GaussianRBF::value ( double  r2) const
overridevirtual

Radial basis function of the RBF kernel.

Parameters
r2Square of the L2 norm of the difference between two feature vectors.
Returns
Kernel value.
Exceptions
std::domain_errorIf r2 < 0.

Implements ml::Kernels::RadialBasisFunction.

◆ gradient()

double ml::Kernels::GaussianRBF::gradient ( double  r2) const
overridevirtual

Gradient of the radial basis function of the RBF kernel.

Parameters
r2Square of the L2 norm of the difference between two feature vectors.
Returns
Kernel value.
Exceptions
std::domain_errorIf r2 < 0.

Implements ml::Kernels::DifferentiableRadialBasisFunction.

◆ second_derivative()

double ml::Kernels::GaussianRBF::second_derivative ( double  r2) const
overridevirtual

Second derivative of the radial basis function of the RBF kernel.

Parameters
r2Square of the L2 norm of the difference between two feature vectors.
Returns
Kernel value.
Exceptions
std::domain_errorIf r2 < 0.

Implements ml::Kernels::DoubleDifferentiableRadialBasisFunction.


The documentation for this class was generated from the following file: