MLpp
ml::Kernels::Kernel Class Referenceabstract

Abstract R^D kernel interface. More...

#include <Kernels.hpp>

Inheritance diagram for ml::Kernels::Kernel:

Public Member Functions

virtual ~Kernel ()
 Virtual destructor.
 
virtual double value (const Eigen::Ref< const Eigen::VectorXd > x1, const Eigen::Ref< const Eigen::VectorXd > x2) const =0
 Value of the kernel \( K(\vec{x}_1, \vec{x}_2) \). More...
 
virtual unsigned int dim () const =0
 Dimension of the feature space.
 

Protected Member Functions

void validate_arguments (const Eigen::Ref< const Eigen::VectorXd > x1, const Eigen::Ref< const Eigen::VectorXd > x2) const
 

Detailed Description

Abstract R^D kernel interface.

A kernel is a symmetric, positive-definite function \( R^D \times R^D \rightarrow R \).

Member Function Documentation

◆ value()

virtual double ml::Kernels::Kernel::value ( const Eigen::Ref< const Eigen::VectorXd >  x1,
const Eigen::Ref< const Eigen::VectorXd >  x2 
) const
pure virtual

Value of the kernel \( K(\vec{x}_1, \vec{x}_2) \).

Parameters
[in]x1First feature vector.
[in]x2Second feature vector.
Returns
Kernel value.
Exceptions
std::invalid_argumentIf x1.size() != #dim() or x2.size() != #dim().

Implemented in ml::Kernels::RBFKernel< RBF >, and ml::Kernels::RBFKernel< DifferentiableRadialBasisFunction >.


The documentation for this class was generated from the following file: