Conjugate gradient logistic regression, as described in Sec. 4 of Thomas P. Minka, "A comparison of numerical optimizers for logistic regression". More...
#include <LogisticRegression.hpp>
Public Member Functions | |
Result | fit (Eigen::Ref< const Eigen::MatrixXd > X, Eigen::Ref< const Eigen::VectorXd > y) const override |
Fits the model and returns the result. More... | |
![]() | |
AbstractLogisticRegression () | |
Constructor setting default parameter values. | |
double | lam () const |
Returns the regularisation parameter. More... | |
double | absolute_tolerance () const |
Returns absolute tolerance for fitted weights. | |
double | relative_tolerance () const |
Returns relative tolerance for fitted weights. | |
unsigned int | maximum_steps () const |
Returns maximum number of steps allowed. | |
void | set_lam (double lam) |
Sets the regularisation parameter. More... | |
void | set_absolute_tolerance (double absolute_tolerance) |
Sets absolute tolerance for weight convergence. More... | |
void | set_relative_tolerance (double relative_tolerance) |
Sets relative tolerance for weight convergence. More... | |
void | set_maximum_steps (unsigned int maximum_steps) |
Sets maximum number of steps. | |
![]() | |
virtual | ~LogisticRegression () |
Virtual destructor. | |
Additional Inherited Members | |
![]() | |
static double | probability (Eigen::Ref< const Eigen::VectorXd > x, double y, Eigen::Ref< const Eigen::VectorXd > w) |
Calculates the probability of label given model weights and feature vector. More... | |
static double | log_likelihood (Eigen::Ref< const Eigen::MatrixXd > X, Eigen::Ref< const Eigen::VectorXd > y, Eigen::Ref< const Eigen::VectorXd > w, double lam) |
Calculates the posterior log-likelihood of data given model weights. More... | |
static void | grad_log_likelihood (Eigen::Ref< const Eigen::MatrixXd > X, Eigen::Ref< const Eigen::VectorXd > y, Eigen::Ref< const Eigen::VectorXd > w, double lam, Eigen::Ref< Eigen::VectorXd > g) |
Calculates the gradient of the posterior log-likelihood of data given model weights, over those weights. More... | |
static void | hessian_log_likelihood (Eigen::Ref< const Eigen::MatrixXd > X, Eigen::Ref< const Eigen::VectorXd > y, Eigen::Ref< const Eigen::VectorXd > w, double lam, Eigen::Ref< Eigen::MatrixXd > H) |
Calculates the Hessian of the posterior log-likelihood of data given model weights, over those weights. More... | |
![]() | |
bool | weights_converged (Eigen::Ref< const Eigen::VectorXd > old_weights, Eigen::Ref< const Eigen::VectorXd > new_weights) const |
Check if weight fitting converged. More... | |
Conjugate gradient logistic regression, as described in Sec. 4 of Thomas P. Minka, "A comparison of numerical optimizers for logistic regression".
|
overridevirtual |
Fits the model and returns the result.
If fitting with intercept is desired, include a row of 1's in the X values.
X | D x N matrix of X values, with data points in columns. |
y | Y vector with length N. Values should be -1 or 1. |
std::invalid_argument | if N or D are zero, or if dimensions of X and y do not match. |
Implements ml::LogisticRegression.